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Glossary of Notation

Cn : The linear space of all n-tuples of complex numbers
〈x, y〉 : The scalar product of vectors x and y
Mn : The space of n× n complex matrices
H : The Hilbert space
Hn : The set of all n× n Hermitian matrices
H+
n : The set of n× n positive semi-definite matrices

Pn : The set of positive definite matrices
I,O : The identity and zero elements of Mn, respectively
A∗ : The conjugate transpose (or adjoint) of the matrix A
|A| : The positive semi-definite matrix (A∗A)1/2

Tr(A) : The canonical trace of matrix A
λ(A) : The eigenvalue of matrix A
σ(A) : The spectrum of matrix A
‖A‖ : The operator norm of matrix A
|||A||| : The unitarily invariant norm of matrix A
x ≺ y : x is majorized by y
A]tB : The t-geometric mean of two matrices A and B
A]B : The geometric mean of two matrices A and B
A∇B : The arithmetic mean of two matrices A and B
A!B : The harmonic mean of two matrices A and B
A : B : The parallel sum of two matrices A and B
Mp(A,B, t) : The matrix p-power mean of matrices A and B
opgx(p, h,K) : The class of operator (p, h)-convex functions on K
A+, A− : The positive and the negative parts of matrix A
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Introduction

Nowadays, the importance of matrix theory has been well-acknowledged in many areas of engineering, prob-
ability and statistics, quantum information, numerical analysis, and biological and social sciences. In particular,
positive definite matrices appear as data points in a diverse variety of settings: co-variance matrices in statistics
[20], elements of the search space in convex and semi-definite programming [1] and density matrices in the quan-
tum information [72].

In the past decades, matrix analysis becomes an independent discipline in mathematics due to a great number
of its applications [5, 7, 18, 24, 25, 26, 27, 34, 39, 46, 85]. Topics of matrix analysis are discussed over algebras
of matrices or algebras of linear operators in finite dimensional Hilbert spaces. Algebra of all linear operators in
a finite dimensional Hilbert space is isomorphic to the algebra of all complex matrices of the same dimension.
One of the main tools in matrix analysis is the spectral theorem in finite dimensional cases. Numerous results in
matrix analysis can be transferred to linear operators on infinite dimensional Hilbert spaces without any difficulties.
At the same time, many important results from matrices are not true so far for operators in infinite dimensional
Hilbert spaces. Recently, many areas of matrix analysis are intensively studied such as theory of matrix monotone
and matrix convex functions, theory of matrix means, majorization theory in quantum information theory, etc.
Especially, physical and mathematical communities pay more attention on topics of matrix inequalities and matrix
functions because of their useful applications in different fields of mathematics and physics as well. Those objects
are also important tools in studying operator theory and operator algebra theory as well.

In 1930 von Neumann introduced a mathematical system of axioms of the quantum mechanics as follows:

(i) Each finite dimensional quantum system of n particles is associated with a Hilbert space of dimension 2n;

(ii) Each observable in such a quantum system corresponds to a Hermitian matrix of the same dimension;

(iii) Each quantum state is associated to a density matrix, i.e., a positive semi-definite matrix of trace 1.

Therefore, matrix theory, matrix analysis and operator theory become the backgrounds of quantum mechanics
and hence, several problems in quantum mechanics could be translated to others in the language of matrices. On
the other hand, in the last decades along with an intensive development of the quantum information theory, matrix
analysis becomes more popular and important.

Recall that if λ1, λ2, · · · , λk are eigenvalues of a Hermitian matrix A, then A can be represented as

A =
k∑
j=1

λjPj ,

where Pj is the orthogonal projection onto the subspace spanned by the eigen-vectors corresponding to the eigen-
value λj . And for a real-valued function f defined at λi (i = 1, · · · , k), the matrix f(A) is well-defined by the
spectral theorem [43] as

f(A) =

k∑
j=1

f(λj)Pj . (0.0.1)
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In quantum theory most of important quantum quantities are defined with the canonical trace Tr on the algebra
of matrices. An important quantity is the quantum entropy. For a density matrix A, the quantum entropy of A is
the value

−Tr(A log(A)),

where the matrix log(A) is defined by (0.0.1).

It is worth to mention that the function log t is matrix monotone on (0,∞), while the function t log t is matrix
convex on (0,∞). Recall that a function f is operator monotone on (0,∞) if and only if tf(t) is operator convex
on (0,∞). Operator monotone functions were first studied by K. Loewner in his seminal papers [66] in 1930. In
the same decade, F. Krauss introduced operator convex functions [60]. Nowadays, the theory of such functions is
intensively studied and becomes an important topic in matrix theory because of their vast of applications in matrix
theory and quantum theory as well [41, 54, 55, 57, 63, 65, 69, 73, 75].

In general, a continuous function f defined on K ⊂ R is said to be [14]:

• matrix monotone of order n if for any Hermitian matrices A and B of order n with spectra in K,

A ≤ B =⇒ f(A) ≤ f(B). (0.0.2)

• matrix convex of order n if for any Hermitian matrices A and B of order n with spectra in K, and for any
0 ≤ λ ≤ 1,

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B). (0.0.3)

If the function f is matrix monotone (matrix convex, respectively) for any dimension of matrices, then it is
called operator monotone (operator convex, respectively).

An important example of operator monotone and convex functions is f(t) = ts. Loewner showed that this
function is operator monotone on R+ if and only if the power s ∈ [0, 1] while it is operator convex on (0,∞) if
and only if s ∈ [−1, 0] ∪ [1, 2].

Now let us look back at the scalar mean theory which sets a starting point for our study in this thesis.

A scalar mean M of non-negative numbers is a function from R+ × R+ to R+ such that:

1) M(x, x) = x for every x ∈ R+;

2) M(x, y) = M(y, x) for every x, y ∈ R+;

3) If x < y, then x < M(x, y) < y;

4) If x < x0 and y < y0, then M(x, y) < M(x0, y0);

5) M(x, y) is continuous;

6) M(tx, ty) = tM(x, y) for t, x, y ∈ R+.

A two-variable function M(x, y) satisfying condition 6) can be reduced to a one-variable function f(x) :=

M(1, x).Namely,M(x, y) is recovered from f asM(x, y) = xf(x−1y). Notice that the function f , corresponding
to M is monotone increasing on R+. And this relation forms a one-to-one correspondence between means and
monotone increasing functions on R+.

In the last few decades, there has been a renewed interest in developing the theory of means for elements in the
subset H+

n of positive semi-definite matrices in the algebra Mn of all matrices of order n. Motivated by a study of
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electrical network connections, Anderson and Duffin [3] introduced a binary operator A : B, called parallel addi-
tion, for pairs of positive semi-definite matrices. Subsequently, Anderson and Trapp [4] have extended this notion
to positive linear operators on a Hilbert space and demonstrated its importance in operator theory. Besides, the
problem to find a matrix analog of the geometric mean of non-negative numbers was a long-standing problem since
the product of two positive semi-definite matrices is not always a positive semi-definite matrix. In 1975, Pusz and
Woronowicz [79] solved this problem and showed that the geometric mean A]B := A1/2(A−1/2BA−1/2)1/2A1/2

of two positive definite matrices A and B is the unique solution of the matrix Riccati equation

XA−1X = B.

In 1980, Ando and Kubo [61] developed an axiomatic theory of operator means on H+
n . A binary operation σ

on the class of positive operators, (A,B) 7→ AσB, is called a connection if the following requirements are fulfilled:

(i) Monotonicity: A ≤ C and B ≤ D imply AσB ≤ CσD;

(ii) Transformation: C∗(AσB)C ≤ (C∗AC)σ(C∗BC);

(iii) Continuity: Am ↓ A and Bm ↓ B imply AmσBm ↓ AσB (Am ↓ A means that the sequence Am converges
strongly in norm to A).

A mean σ is a connection satisfying the normalized condition:

(iv) IσI = I (where I is the identity element of Mn).

The main result in Kubo-Ando theory is the proof of the existence of an affine order-isomorphism from the class
of operator means onto the class of positive operator monotone functions on R+ which is described by

AσfB = A1/2f(A−1/2BA−1/2)A1/2.

This formula verifies that the geometric mean defined by Pusz and Woronowicz was natural and corresponding
to the operator monotone function f(t) = t1/2. A mean σ is called symmetric if AσB = BσA for any positive
matrices A and B. Or, equivalently, the representing function f of a symmetric mean satisfies f(t) = tf(t−1), t ∈
(0,∞).

Later, motivated by information geometry, Morozova and Chentsov [69] studied monotone inner products under
stochastic mappings on the space of matrices and monotone metrics in quantum theory. In 1996, Petz [78] proved
that there is a correspondence between monotone metrics and operator means in the sense of Kubo and Ando, and
hence, connected three important theories in quantum information theory and matrix analysis.

It is worth to mention that along with the quantum entropy of quantum states, many other important quantum
quantities are defined with operator means, operator convex functions and the canonical trace.

Example 0.0.1. For two density matrices A and B, the quantum relative entropy [64] of A with respect to B is
defined by

S(A||B) = −Tr(A(logA− logB)).

The quantum Chernoff bound [10] in quantum hypothesis testing theory is given by a simple expression: For
positive semi-definite matrices A and B,

Q(A,B) = min
0≤s≤1

{Tr(AsB1−s)}.
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One of important quantities in quantum theory is the Renyi divergence [20]: for α ∈ (0, 1) ∪ (1,∞),

Dα(A||B) =
1

α− 1
log

Tr(AsB1−s)

Tr(A)
, D1 =

Tr(A(logA− logB))

Tr(A)
.

All of quantities listed above are special cases of the quantum f -divergence in quantum theory where f is some
operator convex function [45]. Thus, the theory of matrix functions is an important part of matrix analysis and of
quantum information theory as well.

Now let σ and τ be arbitrary operator means (not necessarily Kubo-Ando means) [61]. We introduce a general
approach to operator convexity as follows.

A non-negative continuous function f on R+ is called στ -convex if for any positive definite matrices A and B,

f(AσB) ≤ f(A)τf(B). (0.0.4)

When σ and τ are the arithmetic mean, the function f satisfying the above inequality is operator convex. When σ
is the arithmetic mean and τ is the geometric mean, the function f satisfying (0.0.4) is called operator log-convex.
Such functions were fully characterized by Hiai and Ando in [11] as decreasingly monotone operator functions.

The matrix power mean of positive semi-definite matrices A and B was first studied by Bhagwat and Subrama-
nian [15] as

Mp(A,B, t) = (tAp + (1− t)Bp)1/p , for p ∈ R.

The matrix power mean Mp(A,B, t) is a Kubo-Ando mean if and only if p = ±1. Nevertheless, the power
means with p > 1 have many important applications in mathematical physics and in the theory of operator spaces
[21].

In this thesis, we use (0.0.4) to define some new classes of operator convex functions with the matrix power
means Mp(A,B, t). We study properties of such functions and prove some well-known inequalities for them. We
also provide several equivalent conditions for a function to be operator convex in this new sense.

Now, let us consider some geometrical interpretations for scalar means and matrix means. Let 0 ≤ a ≤ x ≤ b.
It is obvious that the arithmetic mean (a+ b)/2 is the unique solution of the optimization problem

(x− a)2 + (x− b)2 → min, x ∈ R.

And for any scalar mean M on R+,
M(a, b)− a ≤ b− a.

We call this the in-betweenness property.

In 2013, Audenaert studied the in-betweenness property for matrix means in [9]. Recently, Dinh, Dumitru
and Franco [49] continued to investigate this property for the matrix power means. They provided some partial
solutions to Audenaert’s conjecture in [9] and a counterexample to the conjecture for p > 0.

From the property 3) in the definition of scalar means, it is obvious that,

a+ b

2
−M(a, b) ≤ b− a

2
. (0.0.5)

In other words, M(a, b) lies inside the sphere centered at the arithmetic mean
a+ b

2
with the radius equal to a half

of the distance between a and b. We call this the in-sphere property of scalar means with respect to the Euclidean
distance on R. Notice that for s ∈ [0, 1] and p > 0 the s-weighted geometric mean M(a, b) = a1−sbs and the

4



power mean (or binomial mean) Mp(a, b, s) = ((1− s)ap + sbp)1/p satisfy the in-sphere property (0.0.5).

Now, letA andB be positive definite matrices. The Riemannian distance function on the set of positive definite
matrices is defined by

δR(A,B) =

(∑
i

log2(λi(A
−1B))

)1/2

.

In 2005, Moakher [67] showed that the geometric mean A]B is the unique minimizer of the sum of the squares
of the distances:

δ2R(X,A) + δ2R(X,B)→ min, X ≥ 0.

Almost at the same time, Bhatia and Holbrook [17] showed that the curve

γ(s) = A]sB := A1/2(A−1/2BA−1/2)sA1/2 (s ∈ [0, 1])

is the unique geodesic (i.e., the shortest) path joining A and B. Furthermore, the geometric mean A]B is the
midpoint of this geodesic. Therefore, the picture for matrix means is very different from the one for scalar ones.

Notice that one of the important matrix generalizations of the in-sphere property is the famous Powers-Størmer
inequality proved by Audenaert et. al. [10], and then expanded to operator algebras by Ogata [74]: for any positive
semi-definite matrices and for any s ∈ [0, 1],

Tr(A+B − |A−B|) ≤ 2 Tr(AsB1−s). (0.0.6)

Using the last inequality the authors solved a problem in quantum hypothesis testing theory: to define the quantum
generalization of the Chernoff bound [23]. The quantity on the left hand side of (0.0.6) is called the non-logarithmic
quantum Chernoff bound. Along with the mentioned above importance of matrix means, the Powers-Størmer
inequality again shows us that the picture of matrix means is really interesting and complicated.

The second aim of this thesis is to investigate various matrix versions of in-sphere property (0.0.5). More
precisely, we study inequalities involving matrices, matrix means, trace, norms and matrix functions. We also
consider the in-sphere property for matrix means with respect to some distance functions on the manifold of positive
semi-definite matrices.
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The purposes of the current thesis are as follows.

1. Investigate new types of operator convex functions with respect to matrix means, study their properties and
prove some well-known inequalities for them.

2. Characterize new types of operator convex functions by matrix inequalities.

3. Study reverse arithmetic-geometric means inequalities involving general matrix means.

4. Study reverse inequalities for the matrix Heinz means and unitarily invariant norms.

5. Study in-sphere properties for matrix means with respect to unitarily invariant norms.

Methodology. The main tool in our research is the spectral theorem for Hermitian matrices. We use techniques
in the theory of matrix means of Kubo and Ando to define new types of operator convexity. Some basic techniques
in the theory of operator monotone functions and operator convex functions are also used in the dissertation. We
also use basic knowledge in matrix theory involving unitarily invariant norms, trace, etc.

Main results of the work were presented on the seminars at the Department of Mathematics at Quy Nhon
University and on international workshops and conferences as follows:

1. The Second Mathematical Conference of Central- Highland of Vietnam, Da Lat University, November 2017.

2. The 6th International Conference on Matrix Analysis and Applications, Duy Tan University, June 2017.

3. Conference on Algebra, Geometry and Topology, Dak Lak Pedagogical College, November 2016.

4. International Workshop on Quantum Information Theory and Related Topics, VIASM, September 2015.

5. Conference on Mathematics of Central-Highland Area of Vietnam, Quy Nhon University, August 2015.

6. Conference on Algebra, Geometry and Topology (DAHITO), Ha Long, December 2014.

7. International Workshop on Quantum Information Theory and Related Topics, Ritsumeikan University, Japan,
September 2014.

This thesis has Introduction, three chapters, Conclusion, a list of the author’s papers related to the thesis and
preprints related to the topics of the thesis, and a list of references.

Brief content of the thesis.

In Introduction the author provides a background on the topics which are considered in this work. The mean-
ingfulness and motivations of this work are explained. The author also provides a brief content of the thesis with
main results from the last two chapters.

In the first chapter the author collects some basic preliminaries which are used in the thesis.

In the second chapter the author defines and studies new classes of operator convex functions, their properties,
proves some well-known inequalities for them and obtains a series of characterizations.

In the third chapter, we study the in-sphere property for matrix means. We also establish some reverse inequal-
ities for the matrix Heinz means and provide a new characterization of the matrix arithmetic mean.
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Chapter 1

Preliminaries

Let N be the set of all natural numbers. For each n ∈ N, we denote by Mn the algebra of all n × n complex
matrices. Denote by I andO the identity and zero elements of Mn, respectively. In this thesis we consider problems
for matrices, i.e., operators in finite dimensional Hilbert spaces. We will mention if the case is infinite dimensional.

Recall that for two vectors x = (xj), y = (yj) ∈ Cn the inner product 〈x, y〉 of x and y is defined as
〈x, y〉 ≡

∑
j xjyj . Now let A be a matrix in Mn. The conjugate transpose or the adjoint A∗ of A is the complex

conjugate of the transpose AT . We have, 〈Ax, y〉 = 〈x,A∗y〉.

A matrix A is called:

– self-adjoint or Hermitian if A = A∗, or, it is equivalent to that 〈Ax, y〉 = 〈x,Ay〉;
– unitary if AA∗ = A∗A = I;

– positive semi-definite (or positive) (we write A ≥ 0) if

〈x,Ax〉 ≥ 0 for all x ∈ Cn; (1.0.1)

– positive definite (or strictly positive) (we write A > 0) if (1.0.1) is strict for all non-zero vector x ∈ Cn;

– orthogonal projection if A = A∗ = A2.

Note that in the finite dimensional case,A > 0 if and only ifA is invertible andA ≥ 0. A positive semi-definite
matrix is necessary Hermitian. Further, we denote by Hn the set of all n × n Hermitian matrices, by H+

n and Pn
the n × n positive semi-definite and positive definite matrices, respectively. Mention that for any matrix A, the
matrix A∗A is always positive semi-definite. Hence, as a consequence of (v), the module |A| of A is well defined
by |A| := (A∗A)1/2. The partial order (the Loewner partial order) on the set Hn of Hermitian matrices as follows:

A ≥ B if A−B ≥ 0.

A positive semi-definite matrix A with trace 1 is called a density matrix which is associated with a quantum
state in some quantum system. In this sense, all rank one orthogonal projections in Mn are called pure states. And
positive semi-definite matrices are called mixed states.

For a matrix/operator A, the operator norm of A is defined as

‖A‖ = sup{‖Ax‖ : x ∈ H, ‖x‖ ≤ 1}, ‖x‖ = 〈x, x〉1/2.

An operator A is called a contraction if ‖A‖ ≤ 1.

One of the most important information about operators/matrices are their spectra. Generally, the spectrum

7



σ(A) of a linear operator A acting in some Hilbert space consists of all numbers λ ∈ C such that A − λI is not
invertible. Therefore, in the finite dimensional case the spectrum σ(A) of a matrix A is the set of eigenvalues of
A, i.e., all numbers λ such that Ax = λx. Eigenvalues si(A) of the module |A| are called the singular values
(also called s-numbers) of A. For a matrix A ∈ Mn, the notation s(A) ≡ (s1(A), s2(A), ..., sn(A)) means that
s1(A) ≥ s2(A) ≥ ... ≥ sn(A).

Now let us recall some important norms which will be considered in this thesis.

The Ky Fan k-norm is the sum of all singular values, i.e.,

||A||k =

k∑
i=1

si(A).

The Schatten p-norm is defined as

||A||p =

(
n∑
i=1

spi (A)

)1/p

.

When p = 2, we have the Frobenius norm or sometimes called the Hilbert-Schmidt norm :

‖A‖2 = (Tr |A|2)1/2 =

 n∑
j=1

s2j (A)

1/2

.

Definition 1.0.1. A norm ||| · ||| on Mn is called unitarily invariant if for any matrix A ∈ Mn and for any unitary
matrices U, V ∈Mn,

|||UAV ||| = |||A|||.
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Chapter 2

New types of operator convex functions and
related inequalities

Being the most fundamental concept in convex analysis and optimization theory, the convexity of functions
has been extensively studied in various contexts of pure and applied mathematics. The main aim of this chapter
is to define new classes of operator convex functions based on Kubo-Ando theory of operator means even for any
number of matrices [77]. More precisely, we use the family of the matrix power means to define new classes
of so called operator (r, s)-convex functions and operator (p, h)-convex functions. Studying their properties, we
prove some well-known inequalities for them. We also provide similar to the Hansen-Pedersen characterizations
for operator (p, h)-convex and operator (r, s)-convex functions.

The results of this chapter are taken from [51] and [48].

2.1 Operator (p, h)-convex functions

Recall that let p be some positive number, J some interval in R+ containing the interval [0, 1], and K (⊂ R+)
a p-convex subset of R+ (i.e., [αxp + (1− α)yp]1/p ∈ K for all x, y ∈ K and α ∈ [0, 1]).

Definition 2.1.1. Let h : J → R+ be a non-zero super-multiplicative function. A non-negative function f :

K → R is said to be operator (p, h)-convex (or belongs to the class opgx(p, h,K)) if for any A,B ∈ M+
n with

σ(A), σ(B) ⊂ K, and for α ∈ (0, 1),

f
(

[αAp + (1− α)Bp]1/p
)
≤ h(α)f(A) + h(1− α)f(B).

When p = 1, h(α) = α, we get the usual definition of operator convex functions on R+.

Remark 2.1.1. An operator (p, h)-convex function could be either operator monotone or operator convex. How-
ever, there are many operator (p, h)-convex functions which are neither an operator monotone function nor an
operator convex function.

2.1.1 Some properties of operator (p, h)-convex functions

Theorem 2.1.1. Let opgx(p, h,K) be the class of operator (p, h)-convex functions. Then,

(i) If f, g ∈ opgx(p, h,K) and λ > 0, then f + g, λf ∈ opgx(p, h,K);
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(ii) Let h1 and h2 be non-negative and non-zero super-multiplicative functions defined on an interval J with
h2 ≤ h1 in (0, 1). If f ∈ opgx(p, h2,K), then f ∈ opgx(p, h1,K);

(iii) Let f ∈ opgx(p2, h,K) such that f is operator monotone function on K. If 1 ≤ p1 ≤ p2, then f ∈
opgx(p1, h,K).

Theorem 2.1.2. Let K be an interval in R+ such that 0 ∈ K.

(i) If f ∈ opgx(p, h,K) such that f(0) = 0, then

f
(

[αAp + βBp]1/p
)
≤ h(α)f(A) + h(β)f(B) (2.1.6)

holds for arbitrary positive definite matrices A,B with spectra in K and all α, β ≤ 0 such that α+ β ≤ 1;

(ii) Let h be a non-negative function such that h(α) < 1/2 for some α ∈ (0, 1/2). If f is a non-negative function
satisfying (2.1.6) for all matrices A,B with spectra in K and all α, β ≤ 0 with α+ β ≤ 1, then f(0) = 0.

Corollary 2.1.1. For s > 0, put hs(x) = xs (x > 0), and let 0 ∈ K ⊂ R+. For all f ∈ opgx(p, hs,K), the
inequality (2.1.6) holds for all α, β ≥ 0 with α+ β ≤ 1 if and only if f(0) = 0.

2.1.2 Jensen type inequality and applications

Theorem 2.1.3. Let h be a non-negative super-multiplicative function on J and f ∈ opgx(p, h,K). Then for any
k self-adjoint matrices Ai with spectra in K and any αi · · · , k) satisfying

∑k
i=1 αi = 1,

f

[ k∑
i=1

αiA
p
i

]1/p ≤ k∑
i=1

h(αi)f(Ai). (2.1.8)

Let E be a finite nonempty set of positive integers and a set of positive semi-definite matrices Ai (i ∈ E).

F(E) = h(WE)f

[ 1

WE

∑
i∈E

wiA
p
i

]1/p−∑
i∈E

h(wi)f(Ai), (2.1.9)

where WE =
∑

i∈E wi, wi > 0. The function F satisfies the triangle inequality in the following sense.

Theorem 2.1.4. Let h : R+ → R+ be a super-multiplicative function, f : K → R+ an operator (p, h)-convex. Let
M and E be finite nonempty sets of positive integers such that M ∩ E = ∅. Then for any wi > 0 (i ∈ M ∪ E),
and for any positive semi-definite matrices Ai (i ∈M ∪ E) with spectra in K,

F(M ∪ E) ≤ F(M) + F(E).

2.1.3 Characterizations of operator (p, h)-convex functions

Theorem 2.1.5. Let h : J → R+ be a super-multiplicative function, f : K → R+ an operator (p, h)-convex
function. Then for any pair of self-adjoint matrices A,B with spectra in K and for matrices C,D such that
CC∗ +DD∗ = In,

f
(

[CApC∗ +DBpD∗]1/p
)
≤ 2h(1/2) (Cf(A)C∗ +Df(B)D∗) .
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Theorem 2.1.6. Let f be a non-negative function on the interval K such that f(0) = 0, and h a non-negative
and non-zero super-multiplicative function on J satisfying 2h(1/2) ≤ α−1h(α) (α ∈ (0, 1)). Then the following
statements are equivalent:

(i) f is an operator (p, h)-convex function;

(ii) for any contraction V (||V || ≤ 1) and self-adjoint matrix A with spectrum in K,

f
(

[V ∗ApV ]1/p
)
≤ 2h(1/2)V ∗f(A)V ;

(iii) for any orthogonal projection Q and any self-adjoint matrix A with σ(A) ⊂ K,

f
(

[QApQ]1/p
)
≤ 2h(1/2)Qf(A)Q;

(iv) for any natural number k, for any families of positive operators {Ai}ki=1 in a finite dimensional Hilbert
space H satisfying

∑k
i=1 αiAi = IH (the identity operator in H) and for arbitrary numbers xi ∈ K,

f

[ k∑
i=1

αix
p
iAi

]1/p ≤ k∑
i=1

h(αi)f(xi)Ai.

Remark 2.1.3. Here we give an example for the function h which is different from the identify function and satisfies
conditions in Theorem 2.1.6. It is easy to check that for the function h(x) = x3 − x2 + x and for any x, y ∈ [0, 1],

h(xy)− h(x)h(y) = xy(x+ y)(1− x)(1− y) ≥ 0.

Therefore, h is super-multiplicative on [0, 1]. At the same time, the function h(x)/x = x2−x+ 1 attains minimum
at x = 1/2, and hence 2h(1/2) ≤ h(x)/x for any x ∈ (0, 1).

2.2 Operator (r, s)-convex functions

Let r, s be positive numbers. ForX = (A1, A2) with σ(A1), σ(A2) ⊂ K and ω1, ω2 ≥ 0. LetW := ω1+ω2 >

0. The weighted matrix r-power mean M [r](X,W ) is defined by

M [r](X,W ) :=

(
1

W

2∑
i=1

ωiA
r
i

)1/r

.

Definition 2.2.1. Let K be a r-convex subset of R+. A continuous function f : K → (0,∞) is said to be operator
(r, s)-convex if

f(M [r](X,W )) ≤M [s](f(X),W ). (2.2.16)

The reader may notice a similarity between this notion with the notion of (p, h)-convex functions introduced in
the previous section. However there should be no confusion as h is a non-constant function.

2.2.1 Jensen and Rado type inequalities

In the following theorem we prove a Jensen type inequality for operator (r, s)-convexity. Let A1, ..., Am be
Hermitian matrices with spectra in K and W = (ω1, ..., ωm) be positive numbers. We notate X = (A1, ..., Am)
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and Wm = ω1 + ...+ ωm > 0. The weighted matrix r-power mean M r
m(X,W ) is defined by

M [r]
m (X,W ) :=

(
1

Wm

m∑
i=1

ωiA
r
i

)1/r

.

Theorem 2.2.1. Let r, s be arbitrary positive numbers, and m be a natural number. If f is operator (r, s)-convex,
then for X = (A1, · · · , Am) and W = (ω1, · · · , ωm),

f(M [r]
m (X,W )) ≤M [s]

m (f(X),W ). (2.2.18)

When f is operator (r, s)-concave, the inequality (2.2.18) is reversed.

Also, we proves a Rado type inequality for operator (r, s)-convex functions.

Theorem 2.2.2. Let r and s be two positive numbers and f a continuous function on K. For m ∈ N, for X =

(A1, · · · , Am) and W = (ω1, · · · , ωm), we denote

am = Wm

(
M [s]
m [f(X),W ]s − f

(
M [r]
m [X,W ]s

))
.

Then, the following assertions hold:

(i) If f is operator (r, s)-convex then {am}∞m=1 is an increasing monotone sequence;

(ii) If f is operator (r, s)-concave then {am}∞m=1 is an decreasing monotone sequence.

2.2.2 Some equivalent conditions to operator (r, s)-convexity

Theorem 2.2.3. Let f : K → R+ be an operator (r, s)-convex function. Then for any pair of positive definiteA,B
with spectra in K and for matrices C,D such that CC∗ +DD∗ = I,

f((CArC∗ +DBrD∗)1/r) ≤ (Cf(A)sC∗ +Df(B)sD∗)1/s. (2.2.20)

Theorem 2.2.4. Let f be a non-negative function on the interval K such that f(0) = 0. Then the following
statements are equivalent:

(i) f is an operator (r, s)-convex function;

(ii) for any contraction V (||V || ≤ 1) and for any positive semi-definite matrix A with spectrum in K,

f
(

[V ∗ArV ]1/r
)
≤ (V ∗f(A)sV )1/s ;

(iii) for any orthogonal projection Q and for any positive semi-definite matrix A with σ(A) ⊂ K,

f
(

(QArQ)1/r
)
≤ (Qf(A)sQ)1/s ;

(iv) for any natural number k and for any families of positive operators {Ai}ki=1 in a finite dimensional Hilbert
space H such that

∑k
i=1 αiAi = IH (the identity operator in H) and for arbitrary numbers xi ∈ K,

f

[ k∑
i=1

αix
r
iAi

]1/r ≤ ( k∑
i=1

αif(xi)
sAi

)1/s

.
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Chapter 3

Matrix inequalities and the in-sphere property

In the first section of the chapter we consider generalized reverse Cauchy inequalities for two positive definite
matrices A and B and show that generalized reverse Cauchy inequalities hold under the condition AB + BA ≥
0. Moreover, we also show that the generalized reverse Cauchy inequality and the generalized Powers-Størmer
inequality holds with respect to the unitarily invariant norms under the same condition. In the second section we
prove some reverse inequalities of the matrix Heinz means and unitarily invariant norms. And the last section
dedicates the in-sphere property for matrix means.

This chapter is written based on results in [50] and [52].

3.1 Generalized reverse arithmetic-geometric mean inequalities

Young inequalities for two positive matrices are important in estimating some quantum quantities, such as the
quantum Chernoff bound [59] and the Tsallis relative entropy [33]. AσfB = A

1
2 f(A−

1
2BA−

1
2 )A

1
2 is the operator

mean corresponding to the function f in the sense of Kubo and Ando [61]. We call inequality

A+B

2
−AσfB ≤

|A−B|
2

,

the generalized reverse arithmetic-geometric mean (AGM) inequality.

Theorem 3.1.1 ([50]). Let f be a strictly positive operator monotone function on [0,∞) with f((0,∞)) ⊂ (0,∞)

and f(1) = 1. Then for any positive semi-definite matrices A and B with AB +BA ≥ 0,

A+B − |A−B| ≤ 2AσfB.

3.2 Reverse inequalities for the matrix Heinz means

It was shown in [47, Theorem 2.1] that for any operator mean σ and for any A,B ∈ Pn,

A+B

2
−AσB ≤ 1

2
A1/2

∣∣I −A−1/2BA−1/2∣∣A1/2. (3.2.9)
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3.2.1 Reverse arithmetic-Heinz-geometric mean inequalities for unitarily invariant norms

Theorem 3.2.1. Let ||| · ||| be an arbitrary unitarily invariant norm on Mn. Let f be an operator monotone function
on [0,∞) with f((0,∞)) ⊂ (0,∞) and f(0) = 0, and g a function on [0,∞) such that g(t) = t

f(t) (t ∈ (0,∞))

and g(0) = 0. Then for any A,B ∈ Pn,∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2

∣∣∣I −A−1/2BA−1/2∣∣∣A1/2
∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣f(A)1/2g(B)f(A)1/2

∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣f(A)g(B)

∣∣∣∣∣∣∣∣∣.
Corollary 3.2.1. Let A,B ∈ Pn and s ∈ [0, 1]. Then we have∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2|I −A−1/2BA−1/2|A1/2

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣A1/2B1/2
∣∣∣∣∣∣∣∣∣.

Corollary 3.2.2. Let A,B ∈ H+
n and s ∈ [0, 1]. Then we have∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2|I −A−1/2BA−1/2|A1/2

∣∣∣∣∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣∣∣∣∣AsB1−s +A1−sBs
∣∣∣∣∣∣∣∣∣.

Corollary 3.2.3. For any A,B ∈ H+
n such that AB +BA ≥ 0 and s ∈ [0, 1], we get the following inequalitites

|||A+B − |A−B|||| ≤ 2|||A1/2B1/2|||

and |||A+B − |A−B|||| ≤ 2|||AsB1−s +A1−sBs|||.

3.2.2 Reverse inequalities for the matrix Heinz mean with respect to Hilbert-Schmid norm

It is obvious that for any positive numbers a and b,

(a+ b)2 − |a2 − b2| ≤ (asb1−s + a1−sbs)2. (3.2.19)

Theorem 3.2.2. For any A,B ∈ H+
n and X ∈Mn, then

||AX +XB||22 − ||AX −XB||22 ≤ ||AsXB1−s +A1−sXBs||22.

3.3 The in-sphere property for operator means

In this section we will study in-sphere property for operators. In the next theorem, we provide a new character-
ization of the matrix arithmetic mean by the inequality (3.1.6).

Theorem 3.3.1. Let σ be an arbitrary symmetric mean. If for any arbitrary unitarily invariant norm ||| · ||| on Mn,∣∣∣∣∣∣∣∣∣A+B

2
−AσB

∣∣∣∣∣∣∣∣∣ ≤ 1

2
|||A−B|||

whenever A,B ∈ Pn, then σ is the arithmetic mean.

If we replace the Kubo-Ando means by the power mean Mp(A,B, t) = (tAp + (1 − t)Bp)1/p with p ∈ [1, 2]

then the inequality in Theorem 3.3.1 holds without the condition AB +BA ≥ 0. In other words, the matrix power
means Mp(A,B, t) satisfies in-sphere property with respect to the Hilbert-Schmidt 2-norm.
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Theorem 3.3.2. Let p ∈ [1, 2], t ∈ [0, 1] and Mp(A,B, t) = (tAp + (1− t)Bp)1/p. Then for any pair of positive
semi-definite matrices A and B,∣∣∣∣∣∣A+B

2
−Mp(A,B, t)

∣∣∣∣∣∣
2
≤ 1

2

∣∣∣∣∣∣A−B∣∣∣∣∣∣
2
. (3.2.28)
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Conclusion

The thesis obtains the following results.

1. Define new class of operator (p, h)-convex functions and obtain properties for them. This is a new class of
operator function, generalizing many classes of known operator functions.

2. Provide a type of Jensen inequality for operator (p, h)-convex function, generalizing for many types of Jensen
inequality for known classes of operator convex functions

3. Provide a Hansen-Pedersen type inequality for operator(p, h)-convex functions, prove an inequality for index
set functions for this class of functions.

4. Define a class of operator (r, s)-convex function and study some properties for them. This is also a new class
of operator convex functions, generalizing the class of operator r-convex functions.

5. Prove the Jensen and Rado type inequalities for operator (r, s)-convex functions.

6. Provide some equivalent conditions for a function to be operator (p, h)-convex and (r, s)-convex, respec-
tively.

7. Prove a generalized reverse arithmetic-geometric mean inequality involving Kubo-Ando means.

8. Prove some reverse norm inequalities for the matrix Heinz mean.

9. Obtain a new characterization of the arithmetic mean by a matrix inequality with respect to the unitarily
norm.

10. Obtain ”the in-sphere property” for matrix means with respect to unitary invariant norm and Hilbert Schmidt
norm. At the same time, we also show that the matrix power mean satisfies the in-sphere property with
respect to the Hilbert-Schmidt norm.

16



Future investigation.

In the near future, we intend to continue investigation in the following direction:

1. Continue to characterize new classes of operator convexity with some well-known matrix means.

2. Let p, q be positive numbers, h be non-negative real valued super-multiplication function. We consider a
general definiton as follows: A function f is called operator (p, h, q)-convex if

f
(

[αAp + (1− α)Bp]1/p
)
≤ [h(α)f(A)q + h(1− α)f(B)q]1/q

If q = 1 then we get the class of operator (p, h, 1)-convex or called operator (p, h)-convex, and if h ≡ id

is identity function, we get the class of operator (p, id, q)-convex functions, or called as operator (r, s)-convex
functions. In the future, we intend to continue to investigate this general class of operator functions for some
different cases.

3. In-sphere property of the matrix mean: We believe that the matrix power mean satisfies in-sphere property
with respect to the p-Schatten norm a larger range of p and for any unitarily invariant norm.

4. Define new classes of quantum entropy in relation with new types of operator convex functions. It would be
meaningful to study their properties and applications in quantum information theory.
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