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Introduction

Sigular homology and cohomology operations are the tools used to study the problem of the

homotopy classification problem of topological spaces. An important issue in studying the problem

of homotopy type classification of topological spaces is to determine the homotopy group, especially

the stable homotopy groups of the spheres. In [1], Adams constructed a spectral sequence, known

as the Adams spectral sequence, to converge on the p-adic stable homotopy group of the sphere

πS∗ (S0). The E2 term of the Adams spectral sequence is the cohomology of the Steenrod algebra

Ext∗,∗A (Fp,Fp). Since that work came into being, determining the cohomology of the Steenrod

algebra has become a fascinating subject, attracting many interested and research mathematicians.

Since the 60s of the last century, mathematicians have had many studies on Ext∗,∗A (Fp,Fp) for

p = 2, typically those of Adams [1], Wang [65], May [46], Tangora [64], Lin [39], Lin-Mahowald

[40], Bruner [10], and others. However, this is a very difficult problem. Until now, the problem of

determining the cohomology of the Steenrod algebra remains open, especially in the case of odd p.

There are many tools and approaches to study the cohomology of the Steenrod algebra such as

graded differential Lambda algebra (see Bousfield [6], Chen [11], Lin [39], Priddy [54], Singer [56],

Wang [65]), May spectral sequence (see May [44], [45], Tangora [64], Lin [?], Chon-Ha [14, 15]), the

minimal resolution (see Bruner [9]) and the modular invariants. Especially, the modular invariants

are the algebraic transfer (also known as the Singer transfer) constructed by Singer [57] in 1989

and the Lannes-Zarati homomorphism built by Lannes-Zarati in [72].

The Lannes-Zarati homomorphism mod p was first defined by Lannes-Zarati [72] as follows, for

any unstable A -module M and for each integer s ≥ 0,

ϕMs : Exts,s+tA (M,Fp) −→ Ann((RsM)#)t.

Here, for any A-module N , we denote N# the linear dual of N and Ann(N#) the subspace of N#

consisting of all elements annihilated by all positive degree elements of A, and RsM is the Singer

functor.

Moreover, the mod p Lannes-Zarati homomorphism is closely related to the mod p Hurewicz

map. Indeed, if M is the reduced mod p (singular) cohomology of a pointed space X, then ϕMs is

considered as a graded associated version of the mod p Hurewicz map

H : πS∗ (X) ∼= π∗(QX)→ H∗(QX)

of the infinite loop space QX := lim
//
ΩnΣnX in the E2-term of Adams spectral sequence (see

Lannes and Zarati [70], [71] for p = 2 and Kuhn [38] for odd prime p). Hence, the study the

behavior of the mod p Lannes-Zarati homomorphism actually corresponds to the description of

the image of the Hurewicz map.

For p = 2, Lannes và Zarati [72] show that ϕF2
1 is an isomorphism and ϕF2

2 is an epimorphism.

Later, it is proved by Hung et. al. that ϕF2
s , for 3 ≤ s ≤ 5, is trivial at all positive stems (see [27],

[32], [34]). These results are closely related to the conjecture of Curtis [22] (and Wellington [66] for

odd prime) on spherical classes through the fact that, from the results of Adams [1] and Browder

[8], the Hopf invariant one elements and the Kervaire invariant one elements in πS∗ S0 (if they

exist) are respectively detected by certain permanent cycles in Ext1,∗
A (F2,F2) and Ext2,∗

A (F2,F2).

In addition, for M = H̃∗RP∞ and M = H̃∗RP n, it is showed by Hung and Tuan that ϕM0 is an

isomorphism, ϕM1 is an epimorphism and ϕMs is vanishing at all positive stems for s = 2, s = 3 and
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s = 4. This result also shows that the behavior of ϕMs has a close relationship with the conjecture

of Eccles (see [67] for discussion). Thus, understanding the mod p Lannes-Zarati homomorphism

plays an important role in the determination of the image of the Hurewicz map as well as in the

investigation of the conjectures on spherical classes.

According to above discussion, the mod 2 Lannes-Zarati homomorphism has been carefully

studied by many authors for a long time while no-one undertook to investigate the mod p Lannes-

Zarati homomorphism for p odd.

In this thesis, we focus on research the behavior of the mod p Lannes-Zarati homomorphism,

p odd.

Specifically, we have established a chain-level representation of (ϕMs )# in Singer-Hung-Sum

chain complex as well as a chain-level representation of ϕMs in the complex Λ ⊗ M#, for any

A -module M .

Using Lambda algebra to study the kernel and image of the mod p Lannes-Zarati homomor-

phism (1.6) for the case M = Fp can avoid using results of the “hit problem” for RsFp as in [30],

[25], [27], [32]. By this method, we obtain new results about the behavior of ϕ
Fp
s for s ≤ 3 with p

odd. However, for s higher, the computation remains difficult because the Adem relations of the

mod p Dyer-Lashof algebra R, considered as the dual of RsFp, in general, is hard to exploit.

To overcome this difficulty, we develop the power operation P0 acting on Exts,∗A (Fp,Fp) (see

Liulevicius [41] or May [19]). For M = Fp and M = H̃∗(BZ/p), we show that there exist the

power operations P0s acting on Exts,∗A (M,Fp) and on (Fp⊗A RsM)#. Moreover, these actions are

compatible with each other through the mod p Lannes-Zarati homomorphism ϕMs .

A family {ai : i ≥ i0} ⊂ Exts,∗A (M,Fp) is called a P0-family if ai+1 = P0(ai) for i ≥ i0. The

above result allows us to determine ϕMs (ai) through ϕMs (ai0), this makes reduce significantly the

computation in studying the behavior of ϕ
Fp
s , s ≤ 3 and ϕ

H̃∗(BZ/p)
s , s ≤ 1, for p odd prime. Notice

that our method can use it for the case p = 2 with a little modification of degree.

In addition to the introduction, the conclusion and the references, the thesis is divided into 3

chapters.

In Chapter 1, we present the basic knowledge needed for the main part of the thesis. The new

results of the thesis are presented in Chapters 2 and 3.

In Chapter 2 we study the chain-level representation of the dual of ϕMs on Singer-Hung-Sum

chain complex and the chain-level representation of the Lannes-Zarati homomorphism ϕMs on the

complex Λ⊗M#.

In Chapter 3, we present the results obtained from studying the mod p Lannes-Zarati homo-

morphism over Fp and H̃∗(BZ/p), including the case p = 2.

The main results of this thesis are published in two papers [17, 18], one preprint [50] which

were reported at:

• November 9−10th, 2018: The Ninth Conference of the University of Natural Sciences - VNU

HCMC, Ho Chi Minh City (20-minute talk) ;

• June 9 − 14th,2019: Vietnamese-American Mathematical Conference, Quy Nhon (Poster

report)

• August 2nd − 4th, 2019: The 3rd Mathematical Conference of Central and Highland Area of

Vietnam, Buon Ma Thuot (20-minute talk)
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• Seminar at Mathematics Department, Quy Nhon University, Binh Dinh;
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Chapter 1

Preliminaries

1.1 The Steenrod algebra

In 1947, Steenrod [61] defined

Definition 1.1.1. Let X be the topology space, the cohomology operations, ∀i ≥ 0, n ≥ 0,

Sqi : Hn(X,F2)→ Hn+i(X,F2),

act naturally on the cohomology of the topological space X, called the Steenrod squaring.

In 1952, Steenrod [60] continuously construct Steenrod operations over the field Fp with p is

odd prime.

Definition 1.1.2. Let X be the topology space,the cohomology operations, ∀i ≥ 0, n ≥ 0,

P i : Hn(X,Fp)→ Hn+2(p−1)i(X,Fp),

act naturally on the cohomology of the topological space X, called Steenrod power.

That same year, Adem [3] proved that all relations in the Steenrod algebra are derived from

the set of relationships

SqaSqb =

[a/2]∑
i=0

(
b− i− 1

a− 2i

)
Sqa+b−iSqi, (1.1)

for a < 2b ( the case p = 2) and

P iP j =

[i/p]∑
t=0

(−1)i+t
(

(p− 1)(j − t)− 1

i− pt

)
P i+j−tP t, (1.2)

for i < pj,

P iβP j =

[i/p]∑
t=0

(−1)i+t
(

(p− 1)(j − t)
i− pt

)
βP i+j−tP t

−
[i−1/p]∑
t=0

(−1)i−1+t

(
(p− 1)(j − t)− 1

i− pt− 1

)
P i+j−tβP t, (1.3)
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for i ≤ pj (the case p odd), therein binomial coefficients take follow mod p, denote [x] be an integer

of x, is the largest integer that does not exceed x and β is Bockstein operation.

From the above results, purely algebra, we define the algebra generated by the Steenrod oper-

ators (called Steenrod algebra) as follows.

Definition 1.1.3. The Steenrod algebra, A , is unity, graded algebra over the field Fp generated

by elements Sqi of degree i ≥ 0, satisfying Sq0 = 1 and the Adem relations (1.1) (for p = 2);

generated by elements P i, i ≥ 0 of degree 2(p − 1)i and β of degree 1, satisfying P 0 = 1, β2 = 0

and the Adem relations (1.2), (1.3) (for p odd).

Proposition 1.1.4. (See Steenrod-Epstein [61]). The set of all admissible monomials is a basis

of Steenrod’s algebra A , as graded vector space over Fp.

Proposition 1.1.5. (See Steenrod-Epstein [61]). For all i ≥ 0, operations P k indecomposable iff

k is power of p. Then, set {Sq2i|i ≥ 0}, for p = 2 and {P pi |i ≥ 0} ∪ {β} for p odd, is algebraic

span of A .

Proposition 1.1.6. (See Steenrod-Epstein [61]). A∗ is also a Hopf algebra and has a basis,

including monomials form τ ε00 ξ
r1
1 τ

ε1
1 ξ

r2
2 · · · , where εi = 0 or 1.

1.2 Module over the Steenrod algebra

Definition 1.2.1. A A -module M is called unstable if for all elements x ∈M,

• Sqix = 0 for deg(x) < i if p = 2.

• βεP i(x) = 0 for any deg(x) < 2i+ ε, ε = 0, 1 if p > 2.

Categories of all unstable A -modules denoted by U .

Definition 1.2.2. Let A -moduleM , the s-th suspending ofM , denote ΣsM , defined by (ΣsM)n =

Mn−s. The action of the Steenrod algebra on
∑sM given by θ(Σsm) = (−1)sdeg θΣs(θm) for all

m ∈M and θ ∈ A .

1.3 The Lannes-Zarati homomorphism

The destabilization functor D : M → U is the left adjoint to the inclusion U //M. It can

be described more explicitly as follows D(M) := M/EM, where EM := SpanFp{βεP ix : ε + 2i >

deg(x), x ∈M}. Then, D(M) can be identified with the (trivial) A-submodule of M consisting of

all elements in nonnegative degrees.

For anyA-moduleM , the projectionM //Fp⊗AM induces anA-homomorphism D(M) //D(Fp⊗A

M). Thus, there exists a natural A-homomorphism D(M) // Fp ⊗A M which is the composition

D(M) D(Fp ⊗A M)// D(Fp ⊗A M) Fp ⊗A M.� � //

This in turns induces maps between corresponding derived functorsiMs : Ds(M) // TorAs (Fp,M).
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Let Es denote an s-dimensional Fp-vector space. It is well-known that the mod p cohomology

of the classifying space BEs is given by

Ps := H∗BEs = E(x1, . . . , xs)⊗ Fp[y1, . . . , ys],

where, E(x1, · · · , xs) and Fp[y1, · · · , ys] are standard notations for the exterior algebra and the

polynomial algebra respectively over Fp generated by variables x1, · · · , xs degree 1 and y1, · · · , ys
degree 2.

Define α1(M) : Dr(Σ
−1M) //Dr−1(P1⊗M) to be the connecting homomorphism of the functor

D(−) associated to the short exact sequence

0→ P1 ⊗M → P̂ ⊗M → Σ−1M → 0,

where P̂ is the A-module extension of P1 by formally adding the generator x1y
−1
1 in degree −1.

Put

αs(M) := α1(Ps−1 ⊗M) ◦ · · · ◦ α1( Σ−(s−1)M),

then αs(M) is an A-linear map from Dr(Σ
−sM) to Dr−s(Ps ⊗M). In particular, when r = s, we

obtain a map αs(M) : Ds(Σ
−sM) //D0(Ps ⊗M).

On the other hand, for M an unstable A-module, Singer R construction (see Section 2.1

Chapter 2) provides a functorial A-submodule RsM of Ps ⊗M .

Theorem 1.3.1 (Zarati [74, Theórème 2.5]). For any unstable module M , the homomorphism

αs(ΣM) : Ds(Σ
1−sM) // ΣRsM is an isomorphism of unstable A-modules.

Based on the above results, for any unstable A-module M and for s ≥ 0, there exists a

homomorphism (ϕ̄Ms )# such that the following diagram commutes:

Ds(Σ
1−sM) ΣRsM

αs(ΣM)
//Ds(Σ

1−sM)

TorA

s (Fp,Σ1−sM).

iΣ
1−sM

s

��

ΣRsM

TorA

s (Fp,Σ1−sM).

(ϕ̄Ms )#

xx

ΣRsM ΣPs ⊗M� � //

(1.4)

Because the Steenrod algebra A acts trivially on the target, (ϕ̄Ms )# factors through Fp ⊗A

ΣRsM . Therefore, after suspending −1 degree, we obtain the dual of the mod p Lannes-Zarati

homomorphism

Definition 1.3.2. For any unstable A -module M and for all integers s ≥ 0. Then, homomorphism

(ϕMs )# : (Fp ⊗A RsM)t → TorA

s,t(Fp,Σ−sM) ∼= TorA

s,s+t(Fp,M). (1.5)

is called dual of modulo p Lannes-Zarati homomorphism

The linear dual

Definition 1.3.3. For any unstable A -module M and for all integers s ≥ 0. Then, homomorphism

ϕMs : Exts,s+tA (M,Fp) // (Fp ⊗A RsM)#
t
∼= Ann((RsM)#)t, (1.6)

is the so-called modulo p Lannes-Zarati homomorphism.
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1.4 The Singer-Hung-Sum chain complex

Theorem 1.4.1 (Dickson [23], Mùi [49]).

1. The subspace of all invariants under the action of GLs of Fp[y1, . . . , ys] is given by

D[s] := Fp[y1, . . . , ys]
GLs = Fp[qs,0, . . . , qs,s−1].

2. As a D[s]-module, (H∗BEs)
GLs is free and has a basis consisting of 1 and all elements of

{Rs;i1,...,ik : 1 ≤ k ≤ s, 0 ≤ i1 < · · · < ik ≤ s− 1}.

3. The algebraic relations are given by

R2
s;i = 0,

Rs;i1 · · ·Rs;ik = (−1)k(k−1)/2Rs;i1,...,ikq
k−1
s,0

for 0 ≤ i1 < · · · < ik < s.

Let Φs := H∗BEs[L
−1
s ] be the localization of H∗BEs obtained by inverting Ls. The action of

GLs on H∗BEs extends an action of it on Φs. Set ∆s := ΦTs
s ,Γs := ΦGLs

s , where Ts is the subgroup

of GLs consisting of all upper triangle matrices with 1’s on the main diagonal.

Put ui := Mi;i−1/Li−1 and vi := Vi/qi−1,0, then |ui| = 1 and |vi| = 2. From [33], we have

∆s = E(u1, . . . , us)⊗ Fp[v±1
1 , . . . , v±1

s ],

Γs = E(Rs;0, . . . , Rs;s−1)⊗ Fp[q±1
s,0 , qs,1, . . . , qs,s−1];

Let ∆+
s be the subspace of ∆s spanned by all monomials of the form

uε11 v
(p−1)i1−ε1
1 · · ·uεss v(p−1)is−εs

s , εi ∈ {0, 1}, 1 ≤ ij ≤ s, i1 ≥ ε1,

and let Γ+
s := Γs ∩∆+

s .

From Hung-Sum [33], Γ+ := {Γ+
s }s≥0 is a graded differential Fp-module with the differential

induced by

∂(uε11 v
i1
1 · · ·uεss viss ) =

{
(−1)ε1+···+εs−1uε11 v

i1
1 · · ·u

εs−1

s−1 v
is−1

s−1 , εs = −is = 1;

0, otherwise,
(1.7)

where Γ+
0 = Fp.

Given an A-module M , define the stable total power Ss(x1, y1, . . . , xs, ys;m), for m ∈ M , as

follows (see Hung-Sum [33])

Ss(x1, y1, . . . , xs, ys;m) :=
∑

εj = 0, 1,

ij ≥ 0

(−1)ε1+i1+···+εs+isuεss · · ·u
ε1
1 v
−(p−1)i1−ε1
1 · · · v−(p−1)is−εs

s

⊗ (βε1P i1 · · · βεsP is)(m). (1.8)

For convenience, we put Ss(m) := Ss(x1, y1, . . . , xs, ys;m), and Ss(M) := {Ss(m) : m ∈ M} ⊂
∆s ⊗M .

Then Hung-Sum defined

7



Definition 1.4.2. For A -module M , put Γ+M := {(Γ+M)s}s≥0, where (Γ+M)0 := M and

(Γ+M)s := Γ+
s Ss(M) = {vSs(m) : v ∈ Γ+

s ,m ∈M}, is a differential Fp-module and Γ+M is called

chain complex.

To remember, we call this chain complex is the Singer-Hung-Sum chain complex.

From (1.8), for any m ∈M , Ss(m) =
∑

I αIv
I ⊗mI , where vI ∈ ∆s,mI ∈M and αI ∈ Fp, for

any v ∈ Γ+
s ⊂ ∆s, vSs(m) =

∑
I αIvv

I ⊗mI .

For v =
∑

ε,` vε,`u
ε
sv

(p−1)`−ε
s ∈ Γ+

s and m ∈ M , where vε,` ∈ Γ+
s−1, the differential in Γ+M is

given by

∂(vSs(m)) = (−1)deg v+1
∑
ε,`

(−1)`vε,`Ss−1(β1−εP `m). (1.9)

In [33], Hung-Sum showed that Hs(Γ
+M) ∼= TorAs (Fp,M) for any A-module M . Therefore,

Γ+M is a suitable complex to compute TorAs (Fp,M).

Proposition 1.4.3. The map ιM = {ιMs }s≥0 is an injection of differential Fp-modules. Moreover,

ιM induces the isomorphism

H∗(Γ
+M) ∼= TorA

∗ (Fp,M).

1.5 The Lambda algebra and the Dyer-Lashof algebra

In [6], Bousfield et. al. define the lambda algebra (see also Bousfield-Kan [7]), that is a

differential algebra for computing the cohomology of the Steenrod algebra. Moreover, Priddy [54]

proved the Lambda algebra is isomorphic to the co-Koszul resolution of the Steenrod algebra.

Purely algebraic, we can define Lambda algebra as follows.

Definition 1.5.1. The Lambda algebra, Λ, is the unital, graded, associative differential algebra

over Fp generated by λi−1 (i > 0) of degree 2i(p − 1) − 1 and µj−1 (j ≥ 0) of degree 2j(p − 1)

satisfying the Adem relations (see [6], [7], [66] and [54])∑
i+j=n

(
i+ j

i

)
λi−1+pmλj−1+m = 0,

∑
i+j=n

(
i+ j

i

)
(λi−1+pmµj−1+m − µi−1+pmλj−1+m) = 0,

for all m ≥ 1 and n ≥ 0; and ∑
i+j=n

(
i+ j

i

)
λi+pmµj−1+m = 0,

∑
i+j=n

(
i+ j

i

)
µi+pmµi−1+m = 0,

for all m ≥ 0 and n ≥ 0.
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The differential is given by

d(λn−1) =
∑
i+j=n

(
i+ j

i

)
λi−1λj−1,

d(µn−1) =
∑
i+j=n

(
i+ j

i

)
(λi−1µj−1 − µi−1λj−1),

d(στ) = (−1)deg σσd(τ) + d(σ)τ.

Denote λ1
i−1 = λi−1 and λ0

i−1 = µi−1. Let Λs denote the subspace of Λ spanned by all monomial

λI = λε1i1−1 · · ·λ
εs
is−1 of length s.

Given an A-module M , the differential of complex Λ⊗M# is given by

d(λ⊗ h) = d(λ)⊗ h+
∑
i−ε≥0

(−1)deg λ+(1−ε) deg hλλεi−1 ⊗ hβ1−εP i, (1.10)

for λ ∈ Λ and h ∈M#.

Define the excess of λI or of I to be e(λI) = e(I) = 2i1 − ε1 −
∑s

k=2 2(p− 1)ik +
∑s

k=2 εs.

Then, Curtis [22], Wellington [66] mentioned the important quotient algebra of Λ, that is the

mod p Dyer-Lashof algebra R and this algebra is defined as follows.

Definition 1.5.2. The mod p Dyer-Lashof algebra is the quotient algebra of Λ over the (two-sided)

ideal generated by all monomials of negative excess.

Let QI = βε1Qi1 · · · βεsQis denote the image of λI under the canonical projection, and let Rs

denote the subspace of R spanned by all monomials of length s, then Rs is isomorphic to B[s]#.

1.6 Spectral sequences

Definition 1.6.1. A spectral sequences E is a family {Er, dr}, for r ≥ 0 satisfies

(i) Er is a bigraded module, where dr is bigraded differential (r,−r + 1) on Er.

(ii) For each r ≥ 0, exist an isomorphism H(Er) = Er+1.

Spectral sequence of a filtered complex

A filtration F on A-module is a family of A-submodule F pA such that F pA ⊂ F p+1A, for all

integers p. If A = {As} is a graded module, F have to be compatible with the graded. Let a

filtration F on A, associated graded module G(A) is defined by Gp(A) = F pA/F p−1A. If A is

a graded module, associated graded module G(A) is a bigraded module, is defined by Gp,q(A) =

F pAp+q/F p−1Ap+q. In this case, p is called the filtration degree, q is called the complementary

degree and p+ q is called the total degree of an element in Gp,q(A).

A sequence

· · · ⊂ F p−1A ⊂ F pA ⊂ F p+1A ⊂ · · ·

is an infinitely composite sequence of A and an associative graded module includes quotients of

this sequence.
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Filtration F is called convergent if ∩pF pA = 0 and ∪pF pA = A.

Filtration F on a chain complex C is a filter compatible with graded and differential of C (it

mean F pC is a sub-complex of C include {F pCn}). Filtration on C induces filtration on H∗(C) is

defined by

F pH∗(C) := Im[H∗(F pC)→ H∗(C)].
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Chapter 2

Representation of the Lannes-Zarati homomorphism

2.1 The Singer functor

Let Σps be the symmetric group (of all points) of the group Es := (Z/p)s and rn : Es ↪→ Σps be

the inclusion via the action by translations. Denote Z/p the trivial Σps-module of Z/p and Z/p
the Σps-module of Z/p via the signature action. Put

B[s] := im
(
H∗(BΣps ;Z/p)

r∗n−→ H∗(BEs;Z/p)
)

;

B[s] := im
(
H∗(BΣps ;Z/p)

r∗n−→ H∗(BEs; r
∗
nZ/p)

)
.

The structure of B[s] and B[s] are given by the following proposition.

Proposition 2.1.1 (Mui [49], Zarati [74]).

1. B[s] is a free D[s]-module generated by{
1,Ms;i1,...,ikL

p−2+(p−1)[ k−1
2

]
s

}
for 0 ≤ i1 < · · · < ik ≤ s− 1.

2. B[s] is a free D[s]-module generated by{
L
p−1

2
s ,Ms;i1,...,ikL

p−3
2

+(p−1)[ k
2

]
s

}
for 0 ≤ i1 < · · · < ik ≤ s− 1.

For any unstable A-module M , Zarati [74] and Powell [53] defined the (unstable) total power

Sts(x1, y1, . . . , xs, ys;m),

for m ∈M , is defined as follows

Sts(x1, y1, . . . , xs, ys;m) := (−1)s[
|m|
2 ]L

p−1
2
|m|

s Ss(m).

For convenience, we put Sts(m) := Sts(x1, y1, . . . , xs, ys;m) and Sts(M) := {Sts(m) : m ∈
M} ⊂ Ps ⊗M .
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Given an unstable A -module M , the module RsM is defined by (see Zarati [74])

RsM = B[s] · Sts(M+)⊕ B[s] · Sts(M−)

where M+ (resp. M−) is the subspace consisting of all elements of even degree (resp. odd degree)

of M . Then, for each s ≥ 0, the assignment M  RsM provides an exact functor from U to itself.

Zarati [74, Proposition 2.4.6] proved that RsM is an A-submodule of PGLs
s ⊗M ⊂ Ps ⊗M .

Since, we get the following proposition.

Proposition 2.1.2. For M an unstable A-module, RsM is contained in (Γ+M)s. Moreover,

the canonical injection RsM ↪→ (Γ+M)s is given by λSts(m) 7→ (−1)snλL
p−1

2
(2n+δ)

s Ss(m), for

m ∈M2n+δ with δ = 0, 1.

Lemma 2.1.3. For any homogeneous element γ in B[s] or in B[s], the element λ can be expressed

as follows

λ =


∑

I=(ε1,i1,...,εs,is)∈Iγ

ωIu
ε1
1 v

(p−1)i1−ε1
1 · · ·uεss v(p−1)is−εs

s if λ ∈ B[s],

∑
I=(ε1,i1,...,εs,is)∈Iγ

ωIu
ε1
1 v

(p−1)
2i1−p

s−1

2
−ε1

1 · · ·uεss v
(p−1) 2is−1

2
−εs

s if λ ∈ B[s],

where ωI ∈ F∗p and the sum is taken over the set Iγ, which is uniquely defined only depending on

γ. Moreover, every string I = (i1, ε1, . . . , is, εs) ∈ Iγ satisfies the condition: εk = 0, 1, ik ≥ εk for

1 ≤ k ≤ s and

2ij − εj >
s∑

k=j+1

2ik(p− 1)−
s∑

k=2

εk, 1 ≤ j < s, and 2ik ≥ ps−k if λ ∈ B[s].

Combine Proposition 2.1.2 and Lemma 2.1.3, we get the following corollary

Corollary 2.1.4. Let M ∈ U . For any homogeneous element γ = λSts(m) ∈ RsM with m ∈
M2n+δ (δ = 0, 1), γ can be expressed as follows

γ =
∑

I=(ε1,i1,...,εs,is)∈Iγ

ωI(−1)snuε11 v
(p−1)(i1+nps−1)−ε1
1 · · ·uεss v(p−1)(is+n)−εs

s Ss(m),

where ωI ∈ F∗p and the sum is taken over the set Iγ, which is uniquely defined only depending on

γ. Moreover, every string I = (i1, ε1, . . . , is, εs) ∈ Iγ satisfies the condition: εk = 0, 1, ik ≥ εk for

1 ≤ k ≤ s and

2ij − εj >
s∑

k=j+1

2ik(p− 1)−
s∑

k=2

εk, 1 ≤ j < s, and 2ik ≥ ps−k if δ = 1. (2.1)

Using Corollary 2.1.4 and formula (1.9), we obtain the following corollary

Corollary 2.1.5. For an unstable A-module M , the canonical inclusion RsM ↪→ (Γ+M)s maps

to cycles in (Γ+M)s.
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Proposition 2.1.6. Given M an unstable A-module, RsM has an Fp-basis given by

C :=
{
Rσ1
s;0q

j1
s,0 · · ·Rσs

s;s−1q
js
s,s−1Ss(m)

}
for m running through a homogeneous basis of M , σk ∈ {0, 1}, j1 ∈ Z, jk ≥ 0, 2 ≤ k ≤ s and

2j1 + σ1 + · · ·+ σs ≥ |m|.

Lemma 2.1.7. The map φn : Jn
// In given by φn(σ1, j1, . . . , σs, js) = (ε1, i1, . . . , εs, is) where

εk = σk and ik = ps−k(j1 + σ1 + · · ·+ jk + σk) +
∑s−k−1

t=0 (ps−k− pt)(jk+t+1 + σk+t+1), for 1 ≤ k ≤ s,

is a bijection.

Lemma 2.1.8. Given an unstable A-module M , for any homogeneous element m ∈ M , let

(σ1, j1, . . . , σs, js) ∈J|m| and (ε1, i1, . . . , εs, is) = φ|m|(σ1, j1, . . . , σs, js). Then,

Rσ1
s;0q

j1
s,0 · · ·Rσs

s;s−1q
js
s,s−1Ss(m) = uε11 v

(p−1)is−ε1
1 · · ·uεss v(p−1)is−εs

s Ss(m) + smaller monomials.

Proposition 2.1.9. Given an unstable A-module M , the set of all elements

QI ⊗ ` = βεsQi1 · · · βεsQis ⊗ `,

for I ∈ I|`| and ` running through a homogeneous basis of M#, represents an Fp-basis of (RsM)#.

2.2 The chain-level representation of the Lannes-Zarati

homomorphism

In order to investigate the behavior of the mod p Lannes-Zarati homomorphism, we first con-

struct a chain-level representation of (ϕMs )# in the Singer-Hung-Sum chain complex as well as a

chain-level representation of ϕs in the Lambda algebra.

The chain-level representation of (ϕMs )# in the Singer-Hung-Sum chain complex is given by the

following theorem.

Theorem 2.2.1 (Chon-Nhu [17, Theorem 3.1]). The inclusion (ϕ̃Ms )# : RsM // (Γ+M)s given

by

γ 7→ (−1)
(s−2)(s−1)

2 γ

is a chain-level representation of the dual of the Lannes-Zarati homomorphism (ϕMs )#.

Proposition 2.2.2 (Chon-Nhu [17, Prposition 3.2]). The map

ψΣM
s : ΣRsM //DBs(A ,A ,Σ1−sM)

given by

Σγ 7→ (−1)
(s−2)(s−1)

2
+(s−1)(deg γ+δ)[X(γ̃)]

is a chain-level representation of the homomorphism

(αs(ΣM))−1 : ΣRsM //Ds(Σ
1−sM).

For M = Fp, from Zarati [74], RsFp ∼= B[s]. Therefore, we obtain the following corollary
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Corollary 2.2.3 (Chon-Nhu [17, Corollary 3.3]). The inclusion (ϕ̃
Fp
s )# : RsFp ∼= B[s] // Γ+

s

given by

γ 7→ (−1)
(s−2)(s−1)

2 γ

is a chain-level representation of the dual of the Lannes-Zarati homomorphism (ϕ
Fp
s )#.

Hence, by taking dual Corollary 2.2.3, we have the following proposition, which is our main

tool for studying the behavior of the mod p Lannes-Zarati homomorphism.

Proposition 2.2.4 (Chon-Nhu [17, Proposition 3.4]). The projection ϕ̃
Fp
s : Λs

//Rs given by

ϕ̃s(λI) = (−1)
(s−2)(s−1)

2 QI

is a chain-level representation of the Lannes-Zarati homomorphism ϕ
Fp
s .

Proposition 2.2.5 (Chon-Nhu [18, Proposition 3.7]). For any unstable A-module M , the projec-

tion

ϕ̃Ms : Λs ⊗M# // (RsM)#

given by

λI ⊗ ` // (−1)
(s−1)(s−2)

2 [QI ⊗ `]

is a chain-level representation of the mod p Lannes-Zarati homomorphism ϕMs .

2.3 The proof of Proposition 2.2.2

For any M ∈ U , from the short exact sequence 0→ Σ2−sP1⊗M → Σ2−sP̂ ⊗M → Σ1−sM → 0,

we have the connecting homomorphism

δ1(Σi+2−sPi ⊗M) : H∗(EB∗(A ,A ,Σi+1−sPi ⊗M)) //H∗−1(EB∗(A ,A ,Σi+2−sPi+1 ⊗M)),

for 0 ≤ i ≤ s− 2, where P0 = Fp,
For any A-module N , from the definition of the functor D , one gets the short exact sequence

of chain complexes 0 // EB(A ,A , N) //B(A ,A , N) //D(B(A ,A , N)) // 0.

Because B(A ,A , N) is acyclic, for s ≥ 1, the connecting homomorphism

∂∗ : Hs(D(B(A ,A , N))
∼=−→ Hs−1(EB(A ,A , N)) (2.2)

is isomorphic.

Letting N = Σ1−sM , one gets the commutative diagram

Hs−1(EB∗(Σ
1−sM)) Hs−2(EB∗(Σ

2−sP1 ⊗M))
δ1
//

Ds(Σ
1−sM)

Hs−1(EB∗(Σ
1−sM))

∂∗

��

Ds(Σ
1−sM) Ds−1(Σ2−sP1 ⊗M)

α1 // Ds−1(Σ2−sP1 ⊗M)

Hs−2(EB∗(Σ
2−sP1 ⊗M))

∂∗

��

Hs−2(EB∗(Σ
2−sP1 ⊗M)) · · ·

δ1
//

Ds−1(Σ2−sP1 ⊗M)

Hs−2(EB∗(Σ
2−sP1 ⊗M))

Ds−1(Σ2−sP1 ⊗M) · · ·α1 // · · ·

· · ·· · · H0(EB∗(Ps−1 ⊗M)),
δ1
//

· · ·

· · ·

· · · D1(Ps−1 ⊗M)
α1 // D1(Ps−1 ⊗M)

H0(EB∗(Ps−1 ⊗M)),

∂∗

��

where, for convenience, in the diagram, B∗(A ,A , N) is shortly denoted by B∗(N).

From the diagram, the homomorphism αs(ΣM) can be computed by

αs(ΣM) = α1(ΣPs−1 ⊗M) ◦ ∂−1
∗ ◦ δ1(Ps−2 ⊗M) ◦ · · · ◦ δ1(Σ2−sM) ◦ ∂∗.

Put δs−1 := α1(ΣPs−1 ⊗M) ◦ ∂−1
∗ ◦ δ1(Ps−2 ⊗M) ◦ · · · ◦ δ1(Σ2−sM), then αs(ΣM) = δs−1 ◦ ∂∗.
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Lemma 2.3.1. The element γ̃ ∈ EBs−1(A ,A ,Σ1−sM) ⊂ Bs−1(A ,A ,Σ1−sM).

Lemma 2.3.2. The element [X(γ̃)] is a cycle in DBs(A ,A ,Σ1−sM). Moreover, under the ho-

momorphism ∂∗ : Ds(Σ
1−sM)

∼=−→ Hs−1(EBs−1(A ,A ,Σ1−sM)), ∂∗([X(γ̃)]) = [γ̃].

Lemma 2.3.3. The image of [γ̃] ∈ Hs−1(EBs−1(A ,A ,Σ1−sM)) under δs−1 is given by

δs−1([γ̃]) = (−1)
(s−2)(s−1)

2
+(s−1)(deg γ+δ)[Σγ] ∈ D0(ΣPs ⊗M).

Lemma 2.3.4. Let γ =
∑

I∈Iγ ωI(−1)snuε11 v
(p−1)(i1+nps−1)−ε1
1 · · ·uεss v

(p−1)(is+n)−εs
s Ss(m) ∈ RsM,

where m ∈M2n+δ (δ = 0, 1), then

γ =
∑
I∈Iγ

ωI(−1)i1+···+is×β1−ε1P i1+nps−1

(x1y
−1
1 (β1−ε2P i2+nps−2

(x2y
−1
2 · · · (β1−εsP is+n(xsy

−1
s ⊗m))))).

In order to prove Lemma 2.3.4, we require the following results

Lemma 2.3.5 (Hung-Sum [33]). Let H∗BE1 = E(x)⊗Fp[y], and let m,n ∈M for any A -algebra

M . Then, we have

1. Ss(mn) = Ss(m) · Ss(n);

2. Ss(x) = (−1)sus+1;

3. Ss(y) = (−1)svs+1.

Corollary 2.3.6.

1. S1(ui) = −ui+1;

2. S1(vi) = −vi+1.

2.4 The power operations

In the early 60s, Liulevicius [41], [42] showed the existence of the squaring operations

Sq0 : Exts,s+tA (F2,F2) // Ext
s+i,2(s+t)
A (F2,F2).

The operations Sq0 is called the classical squaring operation.

Hung [26] constructed the squaring operator on the duality of the Dickson algebra P (F2 ⊗GLs
H∗(BEs))

Sq0 : P (F2 ⊗GLs H∗(BEs))d // P (F2 ⊗GLs H∗(BEs))(2d+s).

Then, Hung [27, Theorem 1.3] showed that squaring operation Sq0 on P (F2 ⊗GLs H∗(BEs)) that

commutates with the classical squaring operation Sq0 on Exts,s+tA (F2,F2) through the mod 2

Lannes-Zarati homomorphism ϕF2
s . This operation is developed by Hung-Tuan in [34].

From Liulevicius [41], [42] and May [46], there exists the power operation (p odd)

P0 : Exts,s+tA (Fp,Fp) // Ext
s,p(s+t)
A (Fp,Fp).

Its chain-level representation in Λ is given by

P̃
0
(λε1i1−1 · · ·λ

εs
is−1) =

{
λε1pi1−1 · · ·λ

εs
pis−1, ε1 = · · · = εs = 1,

0, otherwise.
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Lemma 2.4.1. The operation P̃
0

does not make increasing the excess of elements in Λ, therefore,

the exists an operation, which is also denoted by P̃
0
, acting on the Dyer-Lashof algebra R given by

P̃
0
(βε1Qi1 · · · βεsQis) =

{
βε1Qpi1 · · · βεsQpis , ε1 = · · · = εs = 1,

0, otherwise.

Lemma 2.4.2. The operation P̃
0

is compatible with the action of A. In particular,

P̃
0
((βε1Qi1 · · · βεsQis)P k) = (P̃

0
(βε1Qi1 · · · βεsQis))P pk. (2.3)

Similarly, the power operation P̃
0

acting on Λ ⊗H also induces a power operation on (Fp ⊗A

RsP )# which is also denoted by P0.

Proposition 2.4.3. The following diagram is commutative

Exts,s+tA (M,Fp) P0
//

ϕMs
��

Ext
s,p(s+t)
A (M,Fp)

ϕMs
��

(Fp ⊗A RsM)#
t

P0
// (Fp ⊗A RsM)#

p(s+t)−s,

for M = Fp and M = P .

2.5 The case p = 2

Proposition 2.5.1. Given an unstable A-module M , the set of all elements QI ⊗ ` for ` running

through a homogeneous basis of M#, I admissible and exc(I) ≥ |`|, represents an F2-basis of

(RsM)#.

Proposition 2.5.2. For an unstable A-module M , the projection ϕ̃Ms : Λs⊗M# //(RsM)# given

by

λI ⊗ ` // [QI ⊗ `]

is a chain-level representation of the mod 2 Lannes-Zarati homomorphism ϕMs .

Proposition 2.5.3 (Hung-Tuan [34, Theorem 4.1]). The following diagram is commutative

Exts,s+tA (M,F2)
Sq0
//

ϕMs
��

Ext
s,2(s+t)
A (M,F2)

ϕMs
��

(F2 ⊗A RsM)#
t

Sq0
// (F2 ⊗A RsM)#

2t+s,

for M = F2 and M = H̃∗(BZ/2).
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Chapter 3

The image of the Lannes-Zarati homomorphism

3.1 The image of the mod p Lannes-Zarati homomorphism

on Fp
Theorem 3.1.1 (Chon-Nhu [17, Theorem 4.1]). The first Lannes-Zarati homomorphism

ϕ1 : Ext1,1+t
A (Fp,Fp) // Ann(B[1]#)t

is an isomorphism.

Theorem 3.1.2 (Chon-Nhu [17, Theorem 4.2]). The second Lannes-Zarati homomorphism

ϕ2 : Ext2,2+t
A (Fp,Fp) // Ann(B[2]#)t

is only non-trivial at the stems t = 0 and t = 2(p− 1)pi+1 − 2, i ≥ 0.

Remark 3.1.3 (Chon-Nhu [17, Remark 4.3]). From the result of Wellington [?, Theorem 11.11],

Ann(R2) is spanned by Q0Q0, βQpi(p−1)βQpi , i ≥ 0, and Qs(p−1)Qs, s = pi+· · ·+1, i > 0. Therefore,

ϕ2 is not an epimorphism.

Theorem 3.1.4 (Chon-Nhu [18, Theorem 5.1]). The third Lannes-Zarati homomorphism

ϕ
Fp
3 : Ext3,3+t

A (Fp,Fp) // (Fp ⊗A R3Fp)#
t

is a monomorphism for t = 0 and vanishing for all t > 0.

Lemma 3.1.5. If λI ∈ Λs and λJ ∈ Λ` such that ϕ̃
Fp
s (λI) = 0 or ϕ̃

Fp
` (λJ) = 0 then ϕ̃

Fp
s+`(λIλJ) = 0.

3.2 The cohomology of the Steenrod algebra

In this section, we construct a spectral sequence over the complex Λ ⊗ H̃∗(BZ/p), which is a

generalized version of one used in Cohen-Lin-Mahowld [20], Lin [39] and Chen [11]. After that, we

use this spectral sequence to compute the cohomology of Steenrod algebra Exts,s+tA (H̃∗(BZ/p),Fp),
and use this result in order to investigate the behavior of the Lannes-Zarati ϕ

H̃∗(BZ/p)
s .
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Spectral sequences on complex chain Λ⊗ H̃∗(BZ/p)
Let F n := F n(Λ⊗ H̃∗(BZ/p)), n ≥ 0 is filter on complex chain Λ⊗ H̃∗(BZ/p), where F 0(Λ⊗

H̃∗(BZ/p)) := 0 and with n > 0,

F n(Λ⊗ H̃∗(BZ/p)) := {λ⊗ h ∈ Λ⊗ H̃∗(BZ/p) : |h| ≤ n}.

Then, En,s,t
0 = (F n(Λs⊗H̃∗(BZ/p))/F n−1(Λs⊗H̃∗(BZ/p)))t ∼= ΣnΛs, therefore, En,s,t

1 = H∗(En,s,t
0 ) ∼=

Σn Exts,s+t−nA (Fp,Fp), and En,s,t
∞
∼= (F nHs(Λ⊗H̃∗(BZ/p))/F n−1Hs(Λ⊗H̃∗(BZ/p)))t, where F nHs(Λ⊗

H̃∗(BZ/p)) := im
(
Hs(F n(Λ⊗ H̃∗(BZ/p))) //Hs(Λ⊗ H̃∗(BZ/p))

)
.

Thus, ⊕n≥1E
n,s,t
∞
∼= Exts,s+tA (H̃∗(BZ/p),Fp).

The cohomology of Steenrod algebra

The differential E∗,0,∗r
dr−→ E∗,1,∗r is given by the following lemma.

Lemma 3.2.1. The non-trivial differentials E∗,0,∗r
dr−→ E∗,1,∗r are listed as follows:

(3.2.1.1) b[t] // α0ab
[t−1], for t ≥ 1;

(3.2.1.2) ab[(mp+k)pi−1] // − (k + 1)hiab
[((m−1)p+k+1)pi−1], for i ≥ 0, 1 ≤ k ≤ p− 1, m ≥ 1.

Theorem 3.2.2 (Chon-Nhu [18, Theorem 5.3], Crossley [21, Theorem 1.1]).

The Ext group Ext0,t
A (H̃∗(BZ/p),Fp) has an Fp-basis consisting of all elements

1. ĥi :=
[
ab[(p−1)pi−1]

]
∈ Ext

0,2(p−1)pi−1
A (H̃∗(BZ/p),Fp), i ≥ 0;

2. ĥi(k) :=
[
ab[kpi−1]

]
∈ Ext0,2kpi−1

A (H̃∗(BZ/p),Fp), i ≥ 0, 1 ≤ k < p− 1.

The differential E∗,1,∗r
dr−→ E∗,2,∗r is given by the following lemma.

Lemma 3.2.3. The non-trivial differentials E∗,1,∗r
dr−→ E∗,2,∗r are listed as follows:

(3.2.3.1) α0b
[t] // α2

0ab
[t−1], for t ≥ 1;

(3.2.3.2) α0ab
[mp+k] // −

(
k+2

2

)
ρab[(m−2)p+k+2], for 0 ≤ k < p− 2,m ≥ 2;

(3.2.3.3) α0ab
[(mp+k)pi−1] // (k + 1)α0hiab

[((m−1)p+k+1)pi−1], for i ≥ 1,m ≥ 1;

(3.2.3.4) α0ab
[(mp+k)pi−p+p−2] // (k + 1)α0hiab

[((m−1)p+k+1)pi−p+p−2], for i ≥ 1,m ≥ 1;

(3.2.3.5) hib
[t] // − hiα0ab

[t−1], for i ≥ 1, t ≥ 1;

(3.2.3.6) h0b
[mp+`] // 1

2
(`− 1)ρab[(m−1)p+`], for m ≥ 1 và ` 6= 1;

(3.2.3.7) h0b
[(mp+e)pi−p2+kp+1] // − (e+ 1)h0hib

[((m−1)p+e+1)pi−p2+kp+1], for i ≥ 2,m ≥ 0;

(3.2.3.8) hiab
[(mp+k)pj−1] // − (k + 1)hihjab

[((m−1)p+k+1)pj−1], for i ≥ 1,m ≥ 1, 0 ≤ j < i;

(3.2.3.9) hiab
[(mp+k)pi−1+pi−1−1] // −

(
k+2

2

)
hi−1;1,2ab

[((m−2)p+k+2)pi−1+pi−1−1], for i ≥ 1,m ≥ 1;

(3.2.3.10) hiab
[(mp+k)pi+(p−1)pi−1−1] // − 1

2
(k − 1)hi−1;2,1ab

[((m−1)p+k)pi+pi−1], for i ≥ 1,m ≥ 1;

(3.2.3.11) hiab
[(mp+k)pi+2+rpi+1+pi+u] //

(
r+2

2

)
hi;2,1ab

[(mp+k−2)pi+2+(r+2)pi+1+pi+u], for i ≥ 1,m ≥ 0, u =

(p− 1)pi−1 − 1;
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(3.2.3.12) hiab
[(mp+k)pj−pi+2+v] // − (k + 1)hihjab

[((m−1)p+k+1)pj−pi+2+v], for j − 2 ≥ i ≥ 1,m ≥
1, v = (p− 2)pi+1 + pi + (p− 1)pi−1 − 1;

(3.2.3.13) hiab
[(mp+k)pj−pi+1+pi+u] //−(k+1)hihjab

[((m−1)p+k+1)pj−pi+1+pi+u], for j−2 ≥ i ≥ 1,m ≥
0, u = (p− 1)pi−1 − 1;

(3.2.3.14) hiab
[(mp+k)pi+1+pi−1] // λ̃iab

[((m−1)p+k+2)pi+1−1], for i ≥ 0,m ≥ 1;

(3.2.3.15) hiab
[mpi+2+kpi+1+epi+pi−1] // (k+2)(e+1)

2
hi;1,2ab

[(m−1)pi+2+kpi+1+(e+1)pi+pi−1], for i ≥ 0,m ≥
0;

(3.2.3.16) hiab
[(mp+`)pj−pi+2+w] // − (` + 1)hihjab

[((m−1)p+`+1)pj−pi+2+w], for j − 2 ≥ i ≥ 0,m ≥
1, w = (p− 2)pi+1 + epi + pi − 1;

(3.2.3.17) hiab
[(mp+`)pj−pi+2+kpi+1+x] //−(`+1)hihjab

[((m−1)p+`+1)pj−pi+2+kpi+1+x], for j−2 ≥ i ≥ 0,

m ≥ 1, k 6= p− 2, x = pi+1 − 1.

Proposition 3.2.4 (Chon-Nhu [18, Proposition A.3]). The infinite term E∗,1,∗∞ has a Fp-basis

consisting of all elements given in Table 3.1.

Table 3.1: The generators of E∗,1,∗∞

Elements Represented by t Range of indexes

α0ĥi α0ab
[(p−1)pi−1] 2(p− 1)pi − 1 i ≥ 1

α0ĥi(k) α0ab
[kpi−1] 2kpi − 1 i ≥ 1, 1 ≤ k < p− 1

α̂(`) α0ab
[p+`] 2(p+ `) + 1 0 ≤ ` < p− 2

hiĥi(1) hiab
[pi−1] 2(p− 1)pi + 2pi − 2 i ≥ 0

hiĥj hiab
[(p−1)pj−1] 2(p− 1)(pi + pj)− 2 0 ≤ j, i; j 6= i, i+ 1

hiĥj(k) hiab
[kpj−1] 2(p− 1)pi + 2kpj − 2 0 ≤ j, i; j 6= i, i+ 1

1 ≤ k < p− 1

d̂i(k) hiab
[kpi+(p−1)pi−1−1] 2(p− 1)(pi + pi−1) i ≥ 1, 1 ≤ k ≤ p− 1

+2kpi − 2

k̂i(k) hiab
[kpi+1+pi−1] 2(k + 1)pi+1 − 2 i ≥ 0, 1 ≤ k < p− 1

p̂i(k) hiab
[(p−1)pi+1+(k+1)pi−1] 2(p− 1)(pi + pi+1) i ≥ 0, 1 ≤ k < p− 1

+2(k + 1)pi − 2

Theorem 3.2.5 (Chon-Nhu [18, Theorem 5.4]). The Ext group Ext1,1+t
A (H̃∗(BZ/p),Fp) has an

Fp-basis consisting of all elements given by the following list

1. α0ĥi =
[
λ0
−1ab

[(p−1)pi−1]
]
, i ≥ 1;

2. α0ĥi(k) =
[
λ0
−1ab

[kpi−1]
]
, i ≥ 1, 1 ≤ k < p− 1;

3. α̂(`) =
[
λ0
−1ab

[p+`] + (`+ 1)λ0
0ab

[`+1]
]
, 0 ≤ ` < p− 2;

4. hiĥi(1) =
[
λ1
pi−1ab

[pi−1]
]
, i ≥ 0;
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5. hiĥj =
[
λ1
pi−1ab

[(p−1)pj−1]
]
, i, j ≥ 0, j 6= i, i+ 1;

6. hiĥj(k) =
[
λ1
pi−1ab

[kpj−1]
]
, i, j ≥ 0, j 6= i, i+ 1, 1 ≤ k < p− 1;

7. d̂i(k) = (P0)i−1
([
λ1
p−1ab

[kp+p−2]
])
, i ≥ 1, 1 ≤ k ≤ p− 1;

8. k̂i(k) = (P0)i
([∑k

j=0
1
j+1

λ1
jab

[(k−j)p+j]
])
, i ≥ 0, 1 ≤ k < p− 1;

9. p̂i(k) = (P0)i
([∑p−1−k

j=0

(k+j
j )

j+1
λ1
jab

[(p−j−1)p+k+j]

])
, i ≥ 0, 1 ≤ k < p− 1.

Proposition 3.2.6 (Chon-Nhu [18, Proposition 5.5]). The Ext∗,∗A (Fp,Fp)-module Exts,∗A (H̃∗(BZ/p),Fp),

for s ≤ 1, is generated by ĥi (i ≥ 0), ĥi(k) (i ≥ 0, 1 ≤ k < p − 1), α̂(`) (0 ≤ ` < p − 2),

d̂i(k) (i ≥ 1, 1 ≤ k ≤ p− 1), k̂i(k) (i ≥ 0, 1 ≤ k < p− 1) and p̂i(k) (i ≥ 0, 1 ≤ k < p− 1) subject

only to the following relations

• hiĥi+1 = 0, i ≥ 0;

• hiĥi+1(k) = 0, i ≥ 0, 1 ≤ k < p− 1;

• hiĥi = 0, i ≥ 0;

• hiĥi(k) = 0, i ≥ 0, 2 ≤ k < p− 1;

• α0ĥ0 = 0; and

• α0ĥ0(k) = 0, 1 ≤ k < p− 1.

3.3 The image of the mod p Lannes-Zarati homomorphism

on H̃∗(BZ/p)

The behavior of the Lannes-Zarati homomorphism ϕ
H̃∗(BZ/p)
s for s ≤ 1 is given by the following

theorems.

Theorem 3.3.1 (Chon-Nhu [18, Theorem 5.6]). The zero-th Lannes-Zarati homomorphism

ϕ
H̃∗(BZ/p)
0 : Ext0,t

A (H̃∗(BZ/p),Fp) // (Fp ⊗A R0H̃
∗(BZ/p))#

t

is an isomorphism.

Theorem 3.3.2 (Chon-Nhu [18, Theorem 5.7]). The first Lannes-Zarati homomorphism

ϕ
H̃∗(BZ/p)
1 : Ext1,1+t

A (H̃∗(BZ/p),Fp) // (Fp ⊗A R1H̃
∗(BZ/p))#

t

sends

(i) hiĥi(1) to
[
βQpiab[pi−1]

]
, for i ≥ 0;
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(ii) hiĥj to
[
βQpiab[(p−1)pj−1]

]
for 0 ≤ j < i;

(iii) hiĥj(k) to
[
βQpiab[kpj−1]

]
for 0 ≤ j < i, 1 ≤ k < p− 1;

(iv) k̂i(k) to (P0)i
([
βQk+1ab[k]

])
, i ≥ 0, 1 ≤ k < p− 1; and

(v) others to zero.

Corollary 3.3.3 (Chon-Nhu [18, Corollary 5.8]). The first Lannes-Zarati homomorphism ϕ
H̃∗(BZ/p)
1

is not an epimorphism.

3.4 The image of the mod 2 Lannes-Zarati homomorphism

The mod 2 Lannes-Zarati homomorphism has been carefully studied by many mathematicians

for a long time. We summarize the results about the behavior of the mod 2 Lannes-Zarati homo-

morphism, which are pulished by Lannes-Zarati [72], Hung et al. [30], [25], [27], [32] in Proposition

3.4.1. We will also re-prove this proposition with a different approach.

Proposition 3.4.1 (Lannes-Zarati [72], Hung et al. [30], [25], [27], [32]).

(i) The first mod 2 Lannes-Zarati homomorphism ϕF2
1 is an isomorphism.

(ii) The second mod 2 Lannes-Zarati homomorphism ϕF2
2 is an epimorphism.

(iii) The s-th mod 2 Lannes-Zarati homomorphism ϕF2
s vanishes at all positive stems in

Exts,s+tA (F2,F2) for 3 ≤ s ≤ 5.

Besides demonstrating the results were pulished about the behavior of the mod 2 Lannes-Zarati

homomorphism on F2 ϕ
F2
s for 1 ≤ s ≤ 5. We also compute image of the indecomposable elements

in Ext6,6+t
A (F2,F2) for 0 ≤ t ≤ 114 through the sixth mod 2 Lannes-Zarati homomorphism.

Theorem 3.4.2 (Nhu [50, Theorem 1.1]). The sixth mod 2 Lannes-Zarati homomorphism

ϕF2
6 : Ext6,6+t

A (F2,F2) // Ann((R6F2)#)t

is trivial on indecomposable elements in Ext6,6+t
A (F2,F2) for 0 ≤ t ≤ 114.

In addition, using this method we can also check the results of Hung-Tuan in [34]

Proposition 3.4.3 (Hung-Tuan [34]).

(i) The zero-th mod 2 Lannes-Zarati homomorphism ϕ
H̃∗(BZ/p)
0 is an isomorphism on

Ext0,t
A (H̃∗(BZ/p),F2).

(ii) The first mod 2 Lannes-Zarati homomorphism ϕ
H̃∗(BZ/p)
1 is a monomorphism on Span{hiĥj :

i ≥ j} and vanishes on Span{hiĥj : i < j}.

(iii) The s-th mod 2 Lannes-Zarati homomorphism ϕ
H̃∗(BZ/p)
s vanishes in all positive stems in

Exts,s+tA (H̃∗(BZ/p),F2) for 2 ≤ s ≤ 4.
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Remark 3.4.4. By Proposition 2.5.1, it is easy to verify that (F2 ⊗A R1H̃
∗(BZ/p))# is spanned

by {[
Q2i−1b[2j−1]

]
: i ≥ j

}
∪
{

(Sq0)i
([
Q2(2j−1)b[1]

]
+
[
Q2j+1−1b[2]

])
: i ≥ 0, j ≥ 1

}
.

Therefore, the first Lannes-Zarati homomorphism ϕ
H̃∗(BZ/p)
1 is not an epimorphism.
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Conclusion

In this thesis. we achieved the following main results:

1. We construct the chain-level representation of the dual of the mod p Lannes-Zarati homomor-

phism (ϕMs )# on Singer-Hung-Sum chain complex as well as the chain-level representation

of the mod p Lannes-Zarati homomorphism ϕMs on the complex Λ⊗M#, for any A -module

M (see Proposition 2.2.5). These results will be used to find kernel and image of the mod p

Lannes-Zarati homomorphism ϕMs with s small for p odd.

2. We develop the power operation P0 acting on Exts,s+tA (Fp,Fp) (see Liulevicius [41], [42] và

May [19]). For M = Fp and M = H̃∗(BZ/p), we showed that there is the operation P0 that

acts on Exts,s+tA (M,Fp) and on (Fp⊗A RsM)#. Moreover, this operation is also commutative

with the Lannes-Zarati homomorphism ϕMs (see Proposition 2.4.3). This makes reduce sig-

nificantly the computation. Therefore, this operator becomes an important tool for studying

the behavior of the mod p Lannes-Zarati homomorphism.

3. Investigate the behavior of the mod p Lannes-Zarati homomorphism ϕMs for M = Fp and

M = H̃∗(BZ/p). As a result, we obtained complete image of ϕ
Fp
s with 1 ≤ s ≤ 3 (see

Theorem 3.1.1, Theorem 3.1.2, Theorem 3.1.4) and image of ϕ
H̃∗(BZ/p)
s with s = 0, 1 (see

Theorem 3.3.1, Theorem 3.3.2).

4. Finally, we verify that the results of the mod 2 Lannes-Zarati homomorphism have been

published in the literature [72], [25], [27], [32], [30]. The obtained results are similar to

the published results but with simpler calculation (see Proposition 3.4.1, Proposition 3.4.3).

Based on the results of Chen [12] on the indecomposable elements of Ext6,6+t
A (F2,F2) for

0 ≤ t ≤ 114, we compute the image of these elements through the sixth Lannes-Zarati

homomorphism for p = 2 using a different approach, that is, we do not use the result of the

“ hit ” problem on D6 (see Theorem ??).

We will be of interest to study some following problems:

1. We will continue to study the behavior of the mod p Lannes-Zarati homomorphism for s ≥ 4.

2. We plan to study the mod p Singer tranfer where p is an odd prime.
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